Page Not Found
Page not found. Your pixels are in another canvas.
A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.
Page not found. Your pixels are in another canvas.
About me
About me
This is a page not in th emain menu
Published:
This post will show up by default. To disable scheduling of future posts, edit config.yml
and set future: false
.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
<a href=“https://papers.nips.cc/paper_files/paper/2022/file/e944bacecce6b06374ac39b260348db0-Paper-Conference.pdf” target=”_blank”>JAWS.</a>
Published in Advances in Neural Information Processing Systems (NeurIPS), 2022
JAWS is a collection of wrapper methods for distribution-free predictive inference when the common data exchangeability (e.g., i.i.d.) assumption is violated due to shifts in the input data distribution (standard covariate shifts). JAWS is based on our core method JAW–the JAckknife+ Weighted for standard covariate shift–and also includes computationally efficient Approximations of JAW (JAWA) using higher-order influence functions.
Recommended citation: Prinster, D., Liu, A., & Saria, S. (2022). JAWS: Auditing Predictive Uncertainty Under Covariate Shift. In Advances in Neural Information Processing Systems. https://papers.nips.cc/paper_files/paper/2022/hash/e944bacecce6b06374ac39b260348db0-Abstract-Conference.html
Published in The Fortieth International Conference on Machine Learning (ICML), 2023
Accepted for an Oral Presentation at ICML 2023 (top ~2% of submissions) and building on our previous “JAWS” framework (NeurIPS 2022), this paper presents JAWS-X, a collection of methods for efficiently estimating predictive confidence intervals for black-box predictors under standard and feedback covariate shift. Our JAWS-X methods achieve distribution-free, finite-sample guarantees while flexibly balancing statistical and computational efficiency.
Recommended citation: Prinster, D., Saria, S., & Liu, A. (2023). JAWS-X: Addressing Efficiency Bottlenecks of Conformal Prediction Under Standard and Feedback Covariate Shift. In International Conference on Machine Learning. PMLR. https://proceedings.mlr.press/v202/prinster23a.html
Published in The International Conference on Machine Learning (ICML), 2024
Paper at ICML 2024. Demonstrates how conformal prediction can theoretically extend to any data distribution (i.e., not only exchangeable or quasi-exchangeable ones), with practical experiments focused on common settings of AI/ML agents including multiround synthetic protein design and active learning.
Recommended citation: Prinster, D.*, Stanton, S.*, Saria, S., & Liu, A. (2023). JAWS-X: Addressing Efficiency Bottlenecks of Conformal Prediction Under Standard and Feedback Covariate Shift. In International Conference on Machine Learning. PMLR. https://arxiv.org/abs/2405.06627
Published:
This is a description of your talk, which is a markdown files that can be all markdown-ified like any other post. Yay markdown!
Published:
This is a description of your conference proceedings talk, note the different field in type. You can put anything in this field.
Undergraduate course, University 1, Department, 2014
This is a description of a teaching experience. You can use markdown like any other post.
Workshop, University 1, Department, 2015
This is a description of a teaching experience. You can use markdown like any other post.