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Abstract

We propose JAWS, a series of wrapper methods for distribution-free uncertainty
quantification tasks under covariate shift, centered on the core method JAW,
the JAckknife+ Weighted with data-dependent likelihood-ratio weights. JAWS
also includes computationally efficient Approximations of JAW using higher-
order influence functions: JAWA. Theoretically, we show that JAW relaxes the
jackknife+’s assumption of data exchangeability to achieve the same finite-sample
coverage guarantee even under covariate shift. JAWA further approaches the JAW
guarantee in the limit of the sample size or the influence function order under
common regularity assumptions. Moreover, we propose a general approach to
repurposing predictive interval-generating methods and their guarantees to the
reverse task: estimating the probability that a prediction is erroneous, based on
user-specified error criteria such as a safe or acceptable tolerance threshold around
the true label. We then propose JAW-E and JAWA-E as the repurposed proposed
methods for this Error assessment task. Practically, JAWS outperform state-of-
the-art predictive inference baselines in a variety of biased real world data sets for
interval-generation and error-assessment predictive uncertainty auditing tasks.

1 Introduction

Auditing the uncertainty under data shift Principled quantification of predictive uncertainty is
crucial for enabling users to calibrate how much they should or should not trust a given prediction
[Thiebes et al.,|2021} |Ghosh et al., [202 1} [Tomsett et al., 2020, |Bhatt et al.| 2021]. Uncertainty-based
predictor auditing can be considered a type of uncertainty quantification performed post-hoc, for
example by a regulator without detailed knowledge of a predictor’s architecture and with limited
resources [Schulam and Saria, [2019]. Data shift poses a major challenge to uncertainty quantification
due to violation of the common assumption that the training and test data are exchangeable, or more
specifically independent and identically distributed (i.i.d.) [Ovadia et al., 2019} [UImer et al., 2020}
Zhou and Levine, [2021} |Chan et al., [2020]. Therefore, it is essential to develop convenient tools for
users or regulators to audit the uncertainty of a given prediction even when training data is biased.

Predictor auditing: Interval generation In this work we distinguish between two types of predictive
uncertainty auditing. We describe the first type as interval generation, which refers to a common
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goal in the distribution-free uncertainty quantification literature: to generate a predictive confidence
interval (or set) that covers the true label with at least a user-specified probability. For instance, an
auditor might ask for predictive intervals that contain the true label with at least, say 90% frequency.

Predictor auditing: Error assessment While predictive interval generation has been a central
focus of the distribution-free uncertainty quantification literature [Angelopoulos and Bates|, 2021]], in
some applications the reverse computation may be more actionable: estimating the probability that
a prediction is erroneous or not, based on user-specified error critieria such as a safe or acceptable
tolerance region around the true label. We thus refer to this task as error assessment. For instance, take
the setting of chemical or radiation therapy dose prediction for cancer treatment, where administering
a dose within approximately +10% of the optimal dose is considered safety-critical (see Appendix
[A.T]for details). Whereas predictive interval generation could fail to provide safety assurance (e.g., if
the predictive confidence interval is larger than the safe tolerance region), error assessment would
give a worst-case probability of the prediction being safe. Similar examples could be formulated in
other applications, such as incision planning in surgical robotics and autonomous vehicle navigation.

Coverage We assume a standard regression setup with a multiset of training data
{(X1,Y1),...,(X,,Y,)} and a test point (X, 41, Yy,+1) with unknown label Y;, 1, where (X;,Y;) €
R? x R foralli € {1,...,n + 1}. Also, we denote a predictor as 7i = A({(X1, Y1), ..., (Xn, Y0)})s

where A is a model-fitting algorithm. For a predictive interval (or set) éfl“i“ : R? — {subsets of R},
a coverage guarantee gives a lower bound to the probability that the interval covers the true test label:

P{Y,1 € CoM (X))} > 1 - e))

The coverage guarantee provides the basis for both interval-generation and error-assessment auditing,
though it is important to note that in this work we focus on marginal rather than conditional coverage
(see [Foygel Barber et al., 202 1]] for more details on this distinction). Standard conformal prediction
methods [Vovk et al.l 2005| [Shafer and Vovk, 2008 |Vovkl [2013]] along with the jackknife+ and
related methods [Barber et al., 2021]], which we refer to together as “predictive inference” methods,
provide a framework for generating predictive intervals with finite-sample guaranteed coverage.

Exchangeability Standard conformal prediction and the jackknife+ rely on two crucial notions of
exchangeability: data exchangeability, that is that the training and test data are all exchangeable
(e.g.,i.i.d.); and secondly that the model-fitting algorithm A treats the data symmetrically [Barber
et al.|[2022]. In common situations of dataset shift, however, the data exchangeability assumption is
violated. Empirically, the coverage performance of standard conformal prediction methods can suffer
under data shift [Tibshirani et al.,|2019, [Podkopaev and Ramdas| 2021]].
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Figure 1: Jackknife+ loses coverage on the airfoil dataset under covariate shift (details in Section ).

In this work, we build on the jackknife+ method due to its beneficial compromise between the
statistical and computational limitations of other conformal prediction methods [Barber et al.| [2021]].
However, jackknife+ coverage performance can still degrade under data shift, such as shown in Figure
[1] and in some applications its computational requirements can still be limiting. To address these
concerns and make extensions to error assessment, we develop JAWS, a series of wrapper methods
for distribution-free uncertainty quantification under covariate shift (see Table[T|for key properties).

Table 1: Summary of key properties for JAWS methods (details in Section [3).

Guarantee (under covariate shift)
Method Task Finite sample Asymptotic Avoids retraining
JAW Interval generation v 4 X
JAWA | Interval generation X v v
JAW-E Error assessment v v X
JAWA-E | Error assessment X v v




Our contributions can be summarized as follows:

1. We develop JAW: a jackknife+ method with data-dependent likelihood-ratio weights for predic-
tive interval generation under covariate shift. We show that JAW achieves the same rigorous,
finite-sample coverage guarantee as jackknife+ [Barber et al.l 2021]] while relaxing the data
exchangeability assumption to allow for covariate shift.

2. We develop JAWA: a sequence of computationally efficient approximations to JAW that uses
higher-order influence functions to avoid retraining. Under assumptions outlined in |Giordano et al.
[2019a]] regarding the regularity of the data, Hessian of the objective (local strong convexity), and
the existence and boundedness of higher order derivatives, we provide an asymptotic guarantee
for the JAWA coverage in the limit of the sample size or influence function order.

3. We propose a general approach to repurposing any distribution-free predictive inference method
to the error assessment task, with rigorous guarantees for the coverage probability estimation. Our
approach applies to methods that assume exchangeable data and to methods like JAW and JAWA
that allow for covariate shift—JAW-E and JAWA-E refer to the error assessment versions.

4. We demonstrate superior empirical performance of JAWS over other distribution-free predictive
inference baselines on a variety of benchmark datasets under covariate shift.

2 Background and related work

2.1 Standard conformal prediction

Conformal prediction has grown into a broad research field since arising in the 1990s [Vovk et al.,
2005, Shafer and Vovkl 2008, Balasubramanian et al., 2014}/ Angelopoulos and Bates| [2021]]. Standard
conformal prediction methods generate a prediction interval (or set) with a finite-sample coverage
guarantee as in (I}, which is distribution-free in the sense that the guarantee applies to any ex-
changeable data distribution [Lei and Wasserman), 2014, [Lei et al.| 2018]]. With the exchangeability
assumptions in Section |1} standard conformal prediction methods rely on a pre-fit score function
S :R? x R — R (in regression, the absolute-value residual score S (x,y) = |y — fa(x)| is commonly
used). A conformal prediction interval at confidence level 1 — v is then determined by a corresponding
quantile on a multiset of (exchangeable) score values.

Split conformal and full conformal are two main types of standard conformal prediction, and each
bears its own limitation [Vovk et al., 2005, |Shafer and Vovk, [2008]]. Split conformal generates scores
on labeled holdout data and is computationally efficient due to not requiring retraining, but sample
splitting to obtain the holdout set can reduce model accuracy [Papadopoulos} 2008, |Lei et al., 2018},
Vovk,|2012]]. On the other hand, full conformal prediction avoids the holdout set requirement, but at
the heavy computational cost of retraining the model on every possible target value (or, in practice,
on a fine grid of target values) [Ndiaye and Takeuchil [2019| Zeni et al.| 2020].

2.2 Covariate shift

Under the covariate shift assumption, the Y| X distribution is assumed to be the same between training
and test data but the marginal X distributions may change [[Sugiyama et al.|[2007, Shimodaira, [2000]:

(X1, Y;) = Py x Pyix,i=1,...,m (Xn+1, Ynt1) ~ Px X Py |x, independently.  (2)

Rich literature exist in this domain—see Appendix [A.2]for more details. Uncertainty quantification
is relatively less explored under covariate shift, though recent work [Ovadia et al., 2019} [Zhou and
Levine, [2021} |Chan et al.| |2020] emphasizes its importance, especially in deep learning.

2.3 Conformal prediction under covariate shift and beyond exchangeability

Tibshirani et al.|[2019] develop the idea of weighted exchangeability for adapting conformal prediction
to the covariate shift setting. Random variables V1, ..., V,, are weighted exchangeable with weight
functions wy, ..., w,, if their joint density f can be factorized as f(v1,...,v,) = [[iq wi(v;) -

g(v1, ..., v,), where g is independent of ordering on its inputs. For covariate shift as in (2), if Px is
absolutely continuous with respect to Py, then the data {(X;,Y;)} are weighted exchangeable with

weight functions w; = ... = w, = land w41 = w = dﬁx/dPX [Tibshirani et al., 2019].



If {v;} represents a set of scores for standard conformal prediction, then we can represent the
empirical distribution of {v;} as -~ +1 Zl 100, + - +15oo, where J,,, denotes a point mass at v;
[Barber et al., 2022]. By extension, weighted conformal prediction uses the weighted empirical
distribution defined as Yo p¥(x )6,,1. + Py, 1 (%), With weights given by

w(X) w()

pi(z) = ST (%) + w(x)’i =1,...,m and  pp,(z) = S w(X;) + w(z)

» 3)

where w = dPx /dPx, so p}’(X,+1) can be thought of as a normalized likelihood ratio weight for
eachi € {1,...,n + 1}. Corollary 1 in [Tibshirani et al.,l{2019] provides the coverage guarantee of
weighted conformal prediction that takes the form of (T) but relaxes the exchangeable data assumption
to allow for covariate shift. However, weighted split and weighted full conformal inherit the same
statistical and computational limitations, respectively, from their standard (exchangeable) variants.

The recent work of [Barber et al., 2022] provides a novel extension of conformal prediction and the
jackknife+ to unknown violations of the exchangeability assumption, including a “nonexchangeable
jackknife+” defined with fixed weights. The key difference between the nonexchangeable jackknife+
in|Barber et al.|[2022] and our proposed JAW method is that Barber et al.|[2022] use fixed weights to
compensate for unknown exchangeability violations (not limited to covariate shift) but at the expense
of a bounded but generally nonzero “coverage gap” (drop in guaranteed coverage relative to if the
data were exchangeable), whereas our JAW method with data-dependent weights assumes covariate
shift but does not suffer from any similar coverage gap. See Appendix [A.3|for more details.

2.4 Jackknife+

The jackknife+ [Barber et al.| [2021]], which is closely related to cross conformal prediction [Vovk
et al., 2018, offers a compromise between the statistical limitation of split conformal and the
computational limitation of full conformal, at the cost of a slightly weaker coverage guarantee. The
jackknife+ predictive interval can most easily be understood as a modification to a predictive interval
from the classic jackknife resampling method [Miller, |1974} Steinberger and Leeb} 2018, |2016|]. For
a set of point masses {d,, } at Values V1, ey Uy let Qg {537 jrl 0y, } denote the level 8 quantile on the

empirical distribution 7" | — +1 57,1 + n}H 5700 and let Q 3 {1 70y, } denote the level 3 quantile on
the empirical distribution Zl 17 +1 T +1 ——000. Then, denoting the model trained without the ith
point as fi_; = .A({(Xl,Yl) oy (Xi21,Yi21), (X1, Yig1)s s (X, Yy) }) and the leave-one-out

residual RFO0 = |Y; — 1i_i(Xy)],

agilfé(knife(Xn+1) = [Q;{%ﬂéﬁ(x'rn+l)7}%£oo }, Qfﬁa{%_‘_l(sﬁ(X?LJrl)JrRiLoo }} . “4)

In contrast, we obtain the jackknife+ predictive interval inBarber et al.|[2021]] by replacing the full
model prediction (X, 1) in @) with fi—;(X,11):

@ﬁkmfa()(nﬂ) = [Q; { 0 (X i)~ REOO }, QT_a{ﬁéﬁ_i(Xﬂ/+l)+RiL()() H .0

[Barber et al., 2021]] prove that, with the same exchangeability assumptions as in standard conformal
prediction, the jackknife+ prediction interval satisfies

P{Yn+1 c C«Jdckknlfe+( n+1)} Z 1—2a. (6)

n,x

2.5 Approximating leave-one-out models with higher-order influence functions

Influence functions (IFs) [Cookl [1977] have a long history in robust statistics for estimating the
dependence of parameters on sample data. Recently, IFs have become more widespread in machine
learning for uses including model interpretability Koh and Liang| [2017] and approximating classic
resampling-based uncertainty quantification methods including bootstrap [Schulam and Sarial 2019],
jackknife, and leave-k-out cross validation [Giordano et al., [2019blla]]. In each of these cases, IFs
enable approximation of the parameters that would be obtained if the model were retrained on
resampled data by instead estimating the effect of a corresponding reweighting. In prior work,
Alaa and Van Der Schaar| [2020] proposed approximating the leave-one-out models required by the
jackknife+ with higher-order IFs, but their work assumes exchangeable or i.i.d. train and test data.



Let d denote the fitted parameters for predictor f trained on the full training data. Given Assumptions
1-4 in|Giordano et al.|[2019a]—which require that 6 is a local minimum of the objective function, that
the objective is k + 1 times continuously differentiable with bounded norms, and that the objective is
strongly convex in the neighborhood of —then the k-th order leave-one-out IF refers to the k-th
order directional derivative of the model parameters 6 with respect to the data weights, in the direction
of the leave-one-out change in weights (See for more details). With each of these kth order
leave-one-out IFs for & € {1, ..., K}, denoted with condensed notation 5k ZHA, we can construct a

K -th order Taylor series approximation to estimated the leave-one-out model parameters 0_;
K
. . 1 . 4
K =0+ gaiie. (7
k=1 "

In this work we implement the algorithm proposed by |Giordano et al.|[2019a] to compute higher-order
IFs, a recursive procedure based on foreward-mode automatic differentiation [Maclaurin et al., 2015]]
for memory efficiency in computing higher-order directional derivatives. Our introduction of IFs is
highly simplified—we refer to Appendix [A.4]and to|Giordano et al.|[2019a] for more details.

2.6 Error assessment

Whereas conformal prediction and related methods generate prediction intervals that control the
error probability (miscoverage level ) at a user-specified level, we refer to the reverse task as error
assessment: estimating the probability that a prediction is erroneous or not, based on user-specified
error criteria. For instance, a user might define an error as any deviation between the prediction
(X p+1) and the true label Y, 11 greater than some acceptable tolerance threshold 7: that is, when
|Yi+1 — i(Xpn41)| > 7. In Section we present a general approach to repurposing predictive
inference methods with validity under covariate shift to error assessment.

We note that for score functions that are monotonic in y, such as S (z,y) = y — p(x), guarantees for
this error assessment task can be obtained using conformal predictive distributions as described by
Vovk et al.|[2017] (also see [Vovk et al.|[2020]], [Vovk and Bendtsen| [2018]], Xie and Zheng|[2022])). In
regression tasks assuming exchangeable data, CPDs generate a probability distribution for the label
over R. However, CPDs require that score functions be monotonic in y, whereas we allow for certain
non-monotone conformity scores such as the commonly used absolute-value residual |y — fi(z)|;
Moreover, CPDs assume exchangeable data, whereas our approach extends to covariate shift.

3 Proposed approach and theoretical results

3.1 JAW: Jackknife+ weighted with data-dependent weights

We present JAW, the JAckknife+ Weighted with data-dependent likelihood-ratio weights, defined by

the following predictive interval:

O (X 1) = [Q; {P¥ (Xnt1) - 05y (xpo0)—RrE00 o Qi o APY (Xnt1) - 05, (X, 11)+ REOO }},
®)

, with p¥ () fori € {1,...,n+ 1} as in (3), where Q {p¥’ (Xn+1) -

Xop1)— RiLOO} denotes the level o quantile of the empirical distribution >_7" | [p¥(X;41) -

where RFO0 = |,ZZ_Z(XZ) -Y;
5

i
6ﬁ7¢(Xn+1)—RiLOO] +p;’17,}+1(X77/+1) - 0_oo, and where Qf_a{p;"(XnH) . 6/771:(Xn+1)+RiLOO} is the

level 1 — o quantile for 377 [p¥ (Xnt1) - 05_, (x,,1)+rE00 ] + Pyt (Xnt1) - 0oc

We choose to define JAW using likelihood-ratio weights w(X;) = dPx (X;)/dPx (X;) in the p}’ (z)
to address covariate shift, but a similar result holds for other instances of weighted exchangeability
and corresponding data-dependent weight functions (see Appendix . We show that 6;;‘\2 (Xnt1)
satisfies the same coverage guarantee as the jackknife+ except relaxing the data exchangeability
assumption to allow for covariate shift, which we state formally in the following theorem.

Theorem 1. Assume data under covariate shift from @)). If Py is absolutely continuous with respect
to Px, then the JAW interval in (§) satisfies

P{Y,i1 € CW(X,0)} > 1 - 20 ©)

n,o



Remark 1. The results from Tibshirani et al.| [2019] do not directly imply Theorem[I} The approach
in[Tibshirani et al.| [2019] relies on leveraging the weighted exchangeability of the data to reweight the
nonconformity scores {V1, ..., V,, 11} so they can be treated as exchangeable, and for the jackknife+
this approach would entail treating fi_; (X, 1) = RZLOO as implicit nonconformity scores. But,
observe that fori € {1,...,n}, [i_; is trained on n — 1 datapoints, whereas /i_(,,41) = /i is trained
on n datapoints. Thus, no reweighting can make fi_; equivalent in distribution to jz and thereby allow
us to treat the reweighted 7i_; (X, 41) = R9€ and [i(X,,41) £ REQ? as exchangeable.

Proof sketch: Our proof technique for Theorem [I]extends the jackknife+ coverage guarantee proof
in Barber et al.| [2021] to the covariate shift setting for JAW using likelihood ratio weights as in
Tibshirani et al.|[2019]. The full proof is given in Appendix [C.T} but the outline is as follows:

Setup: Following Barber et al.| [2021], we define a set of leave-two-out models {fi_(; ;) }. We then
generalize the notion of “strange” points described in|Barber et al.|[2021] to covariate shift.

1. Bounding the total normalized weight of strange points: We establish deterministically that the
total normalized weight of strange points cannot exceed 2c.

2. Weighted exchangeability using the leave-two-out models: Using the leave-two-out model con-
struction, we leverage weighted exchangeability to show that the probability that a test point n + 1
is strange is thus bounded by 2a.

3. Connection to JAW: Lastly, we show that the JAW interval can only fail to cover the test label
value Y,, ;1 if n + 1 is a strange point.

While JAW assumes access to oracle likelihood ratio weights, in practice this information often has
to be estimated. See Appendix [D.5]for a discussion and experiments of JAW with estimated weights.

3.2 JAWA: Using higher-order influence functions to approximate JAW without retraining

For computationally efficient JAW Approximations that avoid retraining n leave-one-out models,
we propose the JAWA sequence, which approximates the leave-one-out models required by JAW
using higher-order influence functions. For each training point ¢ € {1, ...,n}, define the K-th order

influence function approximation to the leave-one-out refit parameters 6_;, obtained from Algorithm
4 in Giordano et al.|[2019a, as given by equation (7), and let 7i'";¥ be the model with with these

approximated parameters g'F K for each i € {1,...,n}. Then, the prediction interval for the K-th
order JAWA (i.e., for JAWA-K) is given by

égzéyA_K(Xle) = [Q; {Pi” (Xnt1) - 5ﬁlf-il<(xn+1),R'f'K»LOO }a

QF - {P¥ (Xns1) - O x4 k00 } (10)

with R 100 = |pFE(X;) - V;

—1

, p¥(x) as in (@), and quantiles defined analogously to JAW.

We now provide an asymptotic coverage guarantee for GMA-K (X,,41) that holds either in the limit
of the sample size or in the limit of the influence function order, under regularity conditions formally
described in|Giordano et al.| [[2019a]]. These assumptions concern the regularity and continuity of the
training data, local convexity of the objective (or that the Hessian is strongly positive definite), and
the existence and boundedness of the objective’s 1st through K + 1th order directional derivatives.

Theorem 2. Assume data under covariate shift from (2)) and that Px is absolutely continuous with
respect to Px. Let Assumptions 1 - 4 and either Condition 2 or Condition 4 from|Giordano et al.
[2019a] hold uniformly for all n. Then, in the limit of the training sample size n — oo or in the limit
of the influence function order K — oo, the JAWA-K interval in (10) satisfies

P{Y, 41 € CAK(x, 1)) >1-2a (11)

n,o

We leave the proof to Appendix [C.2] but we note that the result follows by combining Propositions 1
and 3 in|Giordano et al|[2019a] with the JAW coverage guarantee that we present in Theorem T}

3.3 Error assessment under covariate shift

We now propose a general approach to repurposing predictive inference methods with validity under
covariate shift from predictive interval generation to the reverse task: estimating the probability that a



prediction is erroneous or not, based on user-specified error criteria. For example, consider a user
that defines a prediction fi(X,,41) as erroneous, relative to the true label Y;, 11, if it is farther than
some acceptable tolerance threshold 7 from Y,,41: i.e., if [Y,,4+1 — [i(Xy+1)| > 7. For this common
regression error criterion, our approach to adapting a method such as JAW (8) or weighted split
conformal prediction [Tibshirani et al.,[2019] to error assessment reduces to first defining the set of

labels that would not be considered erroneous, £ = [[i(X,+1) — 7, [i(Xn41) + 7], and then finding

the method’s largest predictive interval contained within E, call it ég;gugit(x n+1)- The coverage

guarantee for ég;gugif(x n+1) then yields a lower bound on P{Y,,; € E}, the probability of no error
(or an upper bound on the error probability). See Figure [2|for an illustration of this example.

. A(Xns1) o
AXnpr) = Interval E I A(Xn1) + I
e ] ‘] ] "R N .

vi T Vi V;"; v CvrvEvEivE T T Vi VL

Crrausit(X,41)

Figure 2: Illustration of approach to repurposing a predictive inference method “w-audit” to error
assessment. The interval £ = [i(X,,41) — 7, (X, 41)+ 7] is shown in violet, the lower score values

{V:F'} in blue, the upper score values {V;V} in red, and the interval é}’{";t;m(XnH) in green. Each
vertical line at a location V; on the real line represents a point mass §y;, with height corresponding to
the normalized likelihood ratio weight p}’ (X, 11).

Generally, a user must specify error criteria by a test point score function S:RIxR >R (for
conformal prediction, a nonconformity score), as well as minimum and maximum acceptable score
values 7~ and 7, where 77 < 7715 i.e., [i(X,,1 1) is considered erroneous if S( X, 11, Yny1) < 77
orif 7t < S(X,,11,Y,.1). (For nonnegative S, we might let 7= = 0.) Then, the values of y for
which observing Y;,11 = y would not imply ji(X,,+1) is erroneous are:
E={yeR:7 <8Xpi1,y) <7t} (12)
Now, assume a predictive inference method with predictive sets that can be written in the form
e (Xn41) = {y € R Qa{p" (Xns+1)dvr } < S(Xni1,9) < Qo ¥ (Xns1)dyv }
(13)
with valid coverage guaranteed under covariate shift. (Note, (I3)) gives the JAW interval (8) by setting
S(z,y) =y—p(x), VE=1_i(Xpnt1) = A(Xnp1) — RFOC, and VY = [i_ (X 41) — (X pp1) +
REOO; see Appendix m Similarly, (T3) gives the prediction interval for weighted split conformal

prediction [Tibshirani et al.|[2019] for absolute value residual scores when 5 (z,y) = |y — fi(x)|, and
for all calibration data 7 we let V.V = |Y; — /i(X;)| and V;* = 0.) Then, defining

agmdt = min ({a’ & 77 < QuApt (Xns)dve b, QF bt (Xas)bye} < 771)0 (14

we can estimate the probability of fi(X,,+1) not resulting in an error as in (12) as:

R o 1— aw—audit if aw-audit exists
P{¥os1 € B} = {0 ) otherEWise (15

While the target coverage for é,vg;glﬁ“(XnH) is used in (T3), the following theorem gives the worst-

case error assessment guarantee for covariate shift (proof in Appendix [C.3). Corollary [T]in Appendix
[B:3]and Corollary [2]in Appendix [B.4]give the error assessment guarantees for JAW-E and JAWA-E
respectively. Appendix gives the analogous guarantee for exchangeable data.

Theorem 3. Assume a predictive inference method of the form (13) has coverage guarantee
P{Ypt1 € Cpadit(X,41)} > 1 — cra — ¢y, with c1,¢2 € R, under covariate shift @) where
Px is absolutely continuous with respect to Px. Define E as in (12) and o™ as in (T4). Then,

{1 - a%‘”"d” —co if ag””di’ exists and oﬂ;j“”d” < l=e

P{Y,s1 € B} > @ (16)

otherwise.



4 Experiments|
4.1 Datasets and creation of covariate shift

We conduct experiments on five UCI datasets [Dua and Graff| [2017]] with various dimensionality
(Table2): airfoil self-noise, red wine quality prediction [Cortez et al.,[2009], wave energy converters,
superconductivity [Hamidieh, 2018]], and communities and crime [Redmond and Baveja, [2002].

Table 2: Statistics for the UCI datasets. Only the first 2000 samples were used for the wave and
superconductivity datasets (for wave, the first 2000 samples of Adelaide data).

Dataset # of samples | # of features Label range
Airfoil self-noise (airfoil) 1503 5 [103.38, 140.987]
Red wine quality (wine) 1599 11 [3, 8]
Wave energy converters (wave) 2000 48 [1226969, 1449349]
Superconductivity (superconduct) 2000 81 [0.2, 136.0]
Communities and crime (communities) 1994 99 [0, 1]

We use exponential tilting to induce covariate shift on the test data, based on the approach used in
Tibshirani et al.|[2019]]. We first randomly sample 200 points for the training data, and then sample
the biased test data from the remaining datapoints that are not used for training with probabilities
proportional to exponential tilting weights. See Appendix [D.I]for additional details.

4.2 Baselines

Baselines for comparison to JAW We compared JAW to the following baselines:

Naive estimates are based on training data residuals |Y; — 7i(X;)|, which suffers from overfitting.
Jackknife uses the classic Jackknife resampling as in (@).
Jackknife+ follows (3), which replaces the prediction fi(X,,+1) in jackknife with fi—; (X, 41).

Jackknife-mm [Barber et al.,[2021]] is a more conservative alternative to jackknife+ that guarantees
coverage at the 1 — « level with exchangeable data, but usually with overly-wide intervals.

U™ (Xi) = [ min fis(Xosn) = QF (RO, max fii(Xopn) + Qf o{RFOCY]

=1,...,

bl e

,,,,,

5. Cross validation+ (CV+) [Barber et al.||[2021] is similar to jackknife+ but splits data into K folds
and replaces the ji_;(X,,+1) with i_g(X,,+1), the model trained with the kth subset removed.

6. Split method follows split conformal prediction, which uses half the data for training and the
other half for generating the nonconformity scores.

7. Weighted split is a version of split conformal with likelihood ratio weights to maintain coverage
under covariate shift, as in |Tibshirani et al.|[2019].

Baselines for comparison to JAWA For influence function orders K € {1, 2,3}, we compared the
proposed JAWA- K method with K -th order influence function approximations of the jackknife-based
baselines that we used as comparisons to JAW—we thus refer to these approximations as IF-K
jackknife, IF- K jackknife+, and IF-K jackknife-mm. Each baseline compared to JAWA-K is thus
also approximated with the same K -th order leave-one-out influence function models.

4.3 Experimental results

We report experimental results on the predictive interval-generation task for both JAW and JAWA and
on the error assessment task for JAW, compared to baselines. Additional experimental details and
supplementary experiments can be found in Appendix [D} including for estimated likelihood ratio
weights in[D.3] ablation study with shift magnitudes in[D.6] and coverage histograms in[D.9]

4.3.1 Interval generation results for JAW: Coverage and interval width

Figure [3|compares JAW and its baselines, firstly regarding mean coverage and secondarily regarding
median interval width, on all five UCI datasets for both neural network and random forest predictors,

! Additional analysis in Appendix@] and code at https://github.com/drewprinster/jaws.git,


https://github.com/drewprinster/jaws.git

averaged over 1000 experimental replicates. See Appendix [D.2]for predictor function details. Meeting
the target coverage level of 1 — « is the primary goal of the interval-generation audit task, but
for methods that meet or nearly meet the target coverage level, smaller interval widths are more
informative. Additionally, smaller variance in coverage indicates a more reliable or consistent method.

As seen in Figure (3| the JAW predictive interval coverage is above the target level of 0.9 across
all datasets, for both random forest and neural network fi functions, along with the jackknife-mm
and weighted split methods. However, JAW’s interval widths are generally smaller and thus more
informative than those of jackknife-mm (which are often overly large, as noted in Barber et al.
[2021]]). Weighted split and JAW perform similarly on mean coverage and median interval width
(both methods have coverage guarantees under covariate shift), but JAW avoids sample splitting and
as a result has lower coverage variance than weighted split for all dataset and predictor conditions
(see Appendix [D.3)), which suggests that JAW’s predictive intervals are more reliable.
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Figure 3: Mean coverage (first row) and median interval width (second row) for neural network and
random forest predictors on UCI datasets. Dashed line is the target coverage level (1 — o = 0.9).
Error bars show the standard error of 1000 repeated experiments. JAW maintains target coverage
under covariate shift for all predictor and dataset conditions along with jackknife-mm and weighted
split—however, JAW’s intervals are generally smaller and thus more informative than jackknife-mm’s,
and JAW’s coverage variance is smaller and thus more reliable than weighted split’s (Appendix [D.3).

4.3.2 Interval generation results for JAWA: Coverage and interval width

Figure [] evaluates JAWA coverage and interval width compared to baselines for IF orders K €
{1, 2,3} with a neural network predictor (see Appendix for predictor details). As with the JAW
experiments, coverage at the target level of 1 — a = 0.9 is the primary goal, while secondarily,
smaller intervals are more informative for methods that meet or nearly meet target coverage. For
three of the five datasets (airfoil, wine, and communities), JAWA is the only method that consistently
reaches or nearly reaches the target coverage level. JAWA and all the baselines perform well on the
wave datasets, and in the superconduct dataset JAWA still outperforms approximations of jackknife
and jackknife+ for all IF orders. Appendix provides an example empirical comparison of JAWA
and JAW runtimes, which demonstrates that JAWA can be orders of magnitude faster to compute.

4.3.3 Error assessment results for JAW-E: AUC

We now turn to an error-assessment audit task where the goal is to evaluate a method’s ability to
estimate the probability that a given prediction is erroneous or not, based on the error criterion
|Yis1 — i(Xnt1)| > 7. Let E = [[i(Xp41) — 7, [@(Xn41) + 7). Then, the goal is to estimate the
probability that 7i(X,,11) is correct, i.e., Y,,;1 € E; or an error, i.e., Y,,11 € E. For five predictive
interval-generation methods repurposed to the error assessment task (JAW-E, jackknife+E, cross
validation+E, split conformal-E, and weighted split conformal-E), Figure [5|reports the area under the
receiver operating characteristic curve (AUROC) for 50 repeated experiments with a neural network
predictor, with dataset-specific values of 7 (see Appendix [D.4]for details and additional experiments
with random forest predictor). Better performing methods have higher AUROC values for all values
7. For most tolerance levels and datasets, JAW achieves AUROC values comparable to jackknife+
and CV+ as well as higher AUROC values than split and weighted split conformal prediction. The




=3 jawa IF-jackknife IF-jackknife+ IF-jackknife-mm

1.0 1.0 1.0 1.0 1.0

1)

0.8 . . | o8 0.8 0.8 0.8
Qo6 06 0.6 0.6 06
o4 0.4 0.4 0.4 0.4

L 0.2 0.2 0.2 0.2 0.2

0.0 0.0 0.0 0.0 0.0
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

2 . M m B 4
M " X 0.1 M -
| : 2
2 2
0 0.0 0 0
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd
IF order IF order IF order IF order IF order

Median
interval width
-

o

(a) Airfoil (b) Wine (c) Wave (d) Superconduct (e) Communities

Figure 4: Mean coverage (first row) and median interval width (second row) for JAWA and baselines
for influence function orders K € {1,2,3}. Dashed line is the target coverage level (1 — o =
0.9). Error bar shows the standard error of 200 repeated experiments. JAWA is more consistent
than baselines in reaching or nearly reaching the target coverage level across datasets and influence
function orders, and it is more computationally efficient than JAW (Appendix [D.7).
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Figure 5: AUROC values for tolerance levels 7 across the three datasets for the neural net predictor,
averaged across 50 experiment replicates. Results for random forest predictor in Appendix [D.4]

comparable performance of JAW and jackknife+ is likely due to a tradeoff between the benefit of
JAW’s validity under covariate shift and its reduced effective sample size inherent to likelihood-ratio
weighting, as jackknife+’s and CV+’s AUROC degrades with reduced sample size (Appendix [D.6).

5 Conclusion

In this paper, we develop JAWS, a series of wrapper methods for distribution-free predictive uncer-
tainty auditing tasks when the data exchangeability assumption is violated due to covariate shift. We
also propose a general approach to repurposing any distribution-free predictive inference method to
the error assessment task. We provide rigorous finite-sample guarantees for JAW and JAW-E on the
interval generation and error assessment tasks respectively, and analogous asymptotic guarantees for
the computationally efficient JAWA and JAWA-E. We moreover demonstrate superior performance of
the JAWS series on a variety of datasets. In supplementary experiments we investigate a number of
JAWS’ limitations: weight estimation can address the assumed access to oracle weights with similar
empirical performance (Appendix [D.3)), and JAW’s increased coverage variance with covariate shift
can be explained by reduced effective sample size due to importance weighting (Appendix [D.6).
Additionally, we note that JAW and JAWA share a limitation with weighted conformal prediction
[Tibshirani et al., 2019] of potentially producing overly large intervals in extreme covariate shift
cases where a test point’s normalized likelihood ratio approaches or exceeds . In the future, we aim
to address the problems of reducing coverage variance and improving predictive interval sharpness.
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A Supplementary background details

A.1 Error assessment motivation: Concrete example

The error-assessment approach to predictor auditing may be more actionable than the interval-
generation approach in safety-critical or high-stakes decision-making situations where there is a
clearly defined margin of error that is considered safe or acceptable. One example is chemical or
radiation therapy dose prediction for cancer treatment, where administering the correct dosage within
5% — 10% is safety-critical. Machine learning is being increasingly employed in cancer chemotherapy
and radiotherapy for purposes including dose optimization [Feng et al.,|2018| [Huynh et al.| |2020].
Dose errors are one of the most common types of errors in chemotherapy and radiotherapy, occurring
when a patient is given a substantially higher or lower than optimal amount of chemical or radiation
treatment [Weingart et al., 2018|, [Van Herk| [2004]. An overdose of either chemotherapeutics or
radiation can be harmful or even lethal to a patient, whereas underdose can result in a reduced
anticancer effect [Gurney, |2002]. A dose error is generally defined as a percentage deviation, between
an administered dose and the truly optimal dose that should have been administered, beyond some
error tolerance: 5% or 10% are commonly used deviation thresholds for defining errors [Cohen et al.|
1996, [Van Herk| 2004]]. Accordingly, the probability that the optimal dosage level lies within say 10%
of the predicted dosage level may be of greater interest to a provider and their patient than identifying
a predictive interval with some predetermined coverage probability (which would provide no error
assurance whenever the predictive interval extends beyond the safe threshold, say of +£10%).

A.2 Supplementary background on covariate shift

Covariate shift is a type of dataset shift where the Y| X distribution is the same between training and
test data but the marginal X distributions are allowed to change [Sugiyama et al.| 2007, |Shimodairal
2000]]. This is a strong but common assumption for many dataset shift problems. Covariate shift
is also closed related to data missingness and sample selection bias [Bickel et al., 2009]]. The most
prevalent method for correcting the shift is by applying likelihood ratio or “importance” weights
[Sugiyama et al., 2007, [Shimodairal [2000]. Density ratio estimation is then a key subproblem of
covariate shift correction [[Sugiyama et al.;[2012]]. Other methods dealing with covariate shift include
matching the (kernel) representation between the two distributions [Gretton et al., 2009, Yu and
Szepesvari, 2012} Zhang et al., [2013} [Zhao et al.| 2021]] and robust optimization [Liu and Ziebart,
2014 |Chen et al., 2016, [Duchi et al., 2019} Rezaei et al., 2021]].

A.3 Supplementary comparison to Barber et al.[[2022]

In the Section of the main paper we contrast our JAW method to the results in Barber et al.
[2022] regarding the nonexchangeable jackknife+. We emphasize that Barber et al.|[2022] uses fixed
weights and compensates for unknown violations of exchangeability at the expense of a coverage gap,
whereas JAW uses data-dependent likelihood ratio weights and assumes covariate shift but does not
suffer from a coverage gap. Additionally, it is also important to take note of and contrast our work
with an extension of the framework in [Barber et al.|[2022] to data-dependent weights that the authors
briefly discuss in their Section 5.3, subsection titled “Fixed versus data-dependent weights” (though
this extension is not a primary focus of their work). In short, this extension from [Barber et al.|[2022]]
does not generalize to JAW beyond giving a trivial coverage guarantee.

In particular, Barber et al.|[2022] do not propose a likelihood-ratio weighting of the jackknife+, but if
one were to define the weights in their nonexchangeable jackknife+ as data-dependent, likelihood
ratio weights like in our JAW method, then the extension discussed in Section 5.3 of Barber et al.
[2022] would in general suffer a coverage gap that could approach 1 under covariate shift. That is,
under covariate shift assumptions and with w; = w(X;) representing the likelihood ratio for datapoint
i, the conditional total variation distance between the original ordered data Z = (71, ..., Z,+1) and
the swapped data Z° = (Z1, ..., Z;_1, Zn+1, Zis1, .-, Zn ) can generally approach 1 for nontrivial
covariate shift, i.e., drv (Z, Z%|wy, ..., wn, t1, ..., tnr1) — 1. This is because under the covariate
shift the training data {71, ..., Z,} and test point Z, ; are not exchangeable (they are weighted
exchangeable), meaning that the unweighted data distributions Z and Z* may have arbitrarily large
total variation distance. The result would then be the trivial coverage guarantee (i.e., only guaranteeing
coverage probability > 0).
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A.4 Supplemnetary background on influence functions

In this work we implement the algorithm proposed by|Giordano et al.|[2019a] to compute higher-order
influence functions (IFs), so we refer to |Giordano et al.|[2019a]] for more comprehensive details and
theory. However, in this supplementary section we provide additional details on basic IFs theory and
our use of IFs for the convenience of the interested reader.

For a weight vector variable w € R"™ and a fixed instance of the variable w = @ representing a

specific reweighting of the data, let us denote [i; as the refitted model and 6() as the refitted model
parameters that would be obtained by retraining the model with data weights @. With our notation
in this section we maintain some similarity to the notation in |Giordano et al.|[2019a]], but we use
the Greek character w rather than w to disambiguate the IF data weights w from the likelihood-ratio
weights w introduced in Section[2.3] For the leave-one-out weight vectors that are of primary interest
for approximating the jackknife+ and related methods with influence functions, for ease of notation
we say that @ = —i denotes the all ones vector except with zero in the -th component so that i_; still
denotes the leave-one-out retrained model, and we denote the corresponding leave-one-out parameters

as 0_; = 0(—i).

For any specific weights @, influence functions assume that é(d)) is a local minimum of the objective

function, and thus that é(d)) is the solution to the following system of equations, where G is the
gradient of the objective function with respect to the model parameters:

0(@) = 6 such that G(6, &) := %(gO(G) + Zwigi(e)) =0, (17)
1=1

where g;(6) is the gradient of the objective function for datapoint ¢ and go(6) is a prior or regularization
term. For the predictor i@ = fi;,, trained on the full, original dataset, we have & = 1,, and can thus

denote the model parameters for /i as 6=20 (1,,). For a resampling-based uncertainty quantification
method like the jackknife+ (or bootstrap, cross validation, or other jackknife methods), retraining the
model for each new reweighting of the training data can sometimes be computationally burdensome

or prohibitive. In these cases, we can instead estimate 6(w) using influence functions to compute a
Taylor series expansion in w centered at 1,, (or more specifically a Von Mises expansion, see Fernholz

[2012]). A first-order influence function—which we will denote as 505@(17,) for consistency with
notation in|Giordano et al.|[2019a]—refers to the first-order directional derivative of the parameters

6(w) with respect to the weights w:

61 é(ln) — i: aé(w)

w
i=1 Owi

Aw;, (18)

w=1

where Aw = w — 1,, is the direction of change in weights relative to the original weights 1,,. The

first-order influence function §14(1,,) thus enables a first-order Taylor series approximatinon of 6 (w),
given by

0" (W) :=0(1,,) +6L6(1,). (19)

Computing the influence function 5&9(17) requires differentiation through the chain rule because
6(w) is only implicitly a function of w through estimating equation (I7). The first-order Taylor series
approximation of 8(w) given in (I9) can then be rewritten as

0" (w) :=0(1,) — HO)'G(O)(w — 1,,). (20)

where H(0) = H(A(1,),1,) and G() = G(6(1,),1,) are the Hessian and the gradient of the
objective function.

Similarly, higher-order Taylor series approximations of é(w) can be obtained using higher order
influence functions 6%6(1,,), where the K -th order Taylor series is given by

K
0K () := 0(1,,) + Z %659(1”). 21
k=1
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Computing éIF'K(w) requires several assumptions. See|Giordano et al.| [2019a] for a formal list, but
informally we assume that 6(1,,) is the solution to G(6(1,), 1,,) = 0, that G(0, 1,,) is K + 1 times

continuously differentiable, that the hessian H () is strongly positive definite (meaning that the
objective function is strongly convex in the neighborhood of the local solution), and the norm of the
derivative d’o"G (6, 1,,) has a finite upper bound for 1 < k < K + 1. In this work, we implement the
recursive procedure based on forward-mode automatic differentiation to achieve memory-efficient
computation of higher-order directional derivatives Maclaurin et al.|[2015]] as described in|Giordano
et al. [2019a)].

While |Alaa and Van Der Schaar [2020] propose a higher-order IF approximation of the jackknife+,
their method assumes exchangeable (e.g., IID) train and test data and offer experiments with only
first and second order IF approximations to the jackknife+. Our proposed JAWA sequence extends
the IF approximation of the jackknife+ proposed by Alaa and Van Der Schaar| [2020] to the setting of
covariate shift, and we demonstrate the benefits of this extension on a variety of datasets and orders
of influence function approximation.

B Supplementary theoretical results

B.1 JAW with general weighted exchangeability

In this work, we define the JAW prediction interval (§) using likelihood-ratio weights to address
covariate shift as in (2) due to the prevalence and applicability of the covariate shift assumption.
However, it is also natural to define a more general version of JAW for other instances of weighted
exchangeable data (analogously to how [Tibshirani et al.|[2019] covers covariate shift as a special
case of weighted conformal prediction).

That is, denoting {71, ..., Zn.1} = {(X1, Y1), ..., (Xpn+1, Yng1) }, from Tibshirani et al.| [2019] we
can define

n+1
Za:a(n+1):i Hj:l w;(Z0(j))

P21y ooy Zng1) = T , (22)

Eo HjL:I wj (ZU(J))
which simplifies to the normalized likelihood ratio weights defined in (B) as a special case when
W) =..=wy, =landw,y; =w = %, as shown in the proof for Corollary 1 in|Tibshirani et al.

[2019]. A more general version of the JAW prediction interval for general weighted exchangeability
with weight functions wy.,,+1 = {wy, ..., w,41} can then be defined as

C”g:?}e,r:}llb:\fl (Xn+1) = {Qa {p;‘ﬂ(zlv ey Z’n—&-l) : 5;2_1.()(”_*_1)7]{1@00 + p;LU+1(Z1a ey Zn+1>5—oc}a

Qlfa{piu(zla ceey Z’I’L+1) : 6ﬁfi(Xn+1)+Rf’OO + p$+1 (Zla ceey Z’I’L+1)6oo}i| )
(23)

where RFO0 = |ﬁ,l(XZ) - YZ-|, with the p¥ (Z1, ..., Z,+1) defined as in (22)), and where @3 denotes
the level 3 quantile function.

The JAW coverage proof technique in Appendix [C.T]yields the following result after substituting in
the general normalized weights p¥* (Z1, ..., Z,+1) defined in (22) for the normalized likelihood ratio
weights p¥’ (X,,+1) and replacing mentions of “covariate shift” with “weighted exchangeability”:

Theorem S1. Assume that Z; = (X;,Y;) € R x R,i € {1,...,n + 1} are weighted exchangeable
with weight functions w1, ..., Wp41. For a € (0, 1), the generalized JAW prediction interval in 23)
satisfies

P{Yy41 € CEmeraIW (X 1)} > 120 (S1)

n,0,W1:in41

B.2 Error assessment assuming exchangeable data
While in Section of the main paper we present a general approach to repurposing predictive

interval-generating methods with validity under covariate shift to the error assessment task, here
we present the analogous results under the exchangeable data assumption. The results in this
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Figure 6: Illustration of terms involved in computing a9 when errors are defined by the event

|Yii1 — f(Xpg1)| > 7. The interval E = [[i(X,,41) — 7, i(Xp41) + 7] is shown in violet, the
values {V;"} in blue, the values {V;} in red, and the interval C2'4"(X,,;1) in green. Each vertical
line at a location V; on the real line represents a point mass dy, with height %ﬂ

section directly apply to common predictive interval-generating methods including split conformal,
jackknife+, and cross-validation+.

The setup is the same as in the main paper Section [3.3] where we first define
E={yeR:7 <8Xpi1,9) <7t} 24)

However, unlike the covariate shift setting, we instead assume exchangeable data and access to a
predictive inference method with valid predictive intervals of the form

C'aUdlt Xnt1) {y Q {n+15VL}<S( Xnt1,Y) S@f_a %ﬂéViU}} (25)

Recall that we use @ {-1; 410
Z?[nﬂévd + 5_00 and Q7 n+1 dyuv} to denote the level 1 — a quantile of the empirical
distribution )" [ évu] + (5 . (Analogous to as stated in Sectlon E (23) gives the jack-
knife+ interval (3) by setting S(x y) =y — (), ViF = 1_i(Xpy1) — 1(Xpy1) — RFOO, and
VU =1_i(Xps1) — i(Xnt1) + RECO. And, (Z3) gives the prediction interval for split conformal

prediction for absolute value residual scores when § (z,y) = |y — p(z)],
we let V.V = |Y; — i(X;)| and V;F = 0.) Then, define a4 as

a%]dit — min ({a/ 0 < @;,{%H(Svf} ) @i;oz {nJrl(SVU} ST }> (26)

We can then estimate the probability of fi(X,,+1) not resulting in an error as in (I2) as:

6VL} to denote the level o quantile of the empirical distribution

and for all calibration data 7

1— audit audit

o'y if o™ exists

27
0 otherwise. @7

Yoy € B} = {

While the target coverage for C;‘L“g‘;( X,+1) is used in (T3)), the following theorem gives the worst-

case error assessment guarantee for exchangeable data (proof in Appendix [C.4).

Theorem S2. [f a predictive inference method that generates predictive sets of the form @23) has
coverage guarantee P{Y,, 11 € C’;‘L’fi” (Xn+1)} > 1 — ciae — o assuming exchangeable data, where
c1,c2 € R, define FE asin @) and avg““d" as in @) Then,

if it exists and ot < L

otherwise

o 1— audit __
PV € B} > {o e L)

B.3 JAW-E error assessment guarantee

We now state the error assessment guarantee for JAW-E as Corollary [T] which follows directly from
Theorem 3] First, recall that we assume a predictive inference that has valid coverage under covariate
shift and can be written in the form of (T3), which we restate here:

O (X i) = {y € R: Qu{pl (Xnt1)dvr } < S(Xnp1,1) < QF o {pl (Xng1)dye }}
(29)
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To obtain the JAW predictive interval from (29), we define the test point score functioas S (x,y) =
y — fi(z), and for all i € {1,...,n} welet V.E = fi_;(Xp41) — 1(Xpt1) — REOD and VU =
fiei(Xns1) — A(Xng1) + RECOO:

Crat ™ (K1) = {y € R Qu {0} (Xut1)0p_, (x, 0 -xon)- 20O} S 4 = H(Xns1)
<O o AP¥ (Xn )0, ()X )+ REOO
={yeR: @;{p?(Xn+1)6,;,i<xn+l)_RiLoo} <y
S@La{piv(Xn+1)5ﬂ,i(xn+l)+3imo}}
= églA,XV(XnH) (30)

Then, let us define a A" as:

O(éAW = min ({a/ 170 < Q;,{p;”(Xn_,_l)(sﬁ_i(xnﬂ)_RiLoo},

i {p¥’ (Xn+1)05_,(x,,1)+REOO} < T+}> . (€29

Corollary 1. Assume data under covariate shift from [2) where Px is absolutely continuous with
respect to Px. Define E as in (12) and o2V as in (B1). Then,

JAW

_ JAW _ 1
P{YnHeE}z{é 20%; 7 <3

o JAW
if g exists and « (32)

otherwise

B.4 JAWA-E error assessment guarantee

Lastly for our theoretical results, we state the error assessment guarantee for JAWA-E as Corollary 2]
Whereas Corollary [T holds for finite samples, Corollary [2holds in the limit either of the number of
samples or in the order of the influence function approximation.

First, define

JAWA-K : /., — — w
g = min ({a 7 < Qa,{pi (X"""l)(SﬁlfiiK(XnH)—RiF’K’LOO}’

i‘ria/{p;u(XnJr]_>6ﬁ|f,i}((Xn+l)+RliF7K,L()o} < T+}> . (33)

Corollary 2. Let Assumptions I - 4 and either Condition 2 or Condition 4 from |Giordano et al.

[2019a] hold uniformly for all n. Assume data under covariate shift from (2) where Px is absolutely
continuous with respect to Px. Define E as in (12) and o’2"A"X as in (33)). Then,

Then, as either n — oo or as K — oo, we have

P{Y,.1 € E} > {1 — ZQgWA'K ifoz%WA‘K exists and OéjElquA_K < % (34)

otherwise

2Note that the test point score function S(z, y) = y—7i(z) that we use to obtain an alternative definition of the
JAW interval in (30) (and could analogously be used to define the jackknife+) has nuanced differences from the
score functions used in weighted standard conformal prediction methods (as well as in their unweighted variants).
As mentioned in the main paper, (29) yields the weighted split conformal prediction interval for absolute value
residual scores when S(z,y) = |y — fi(x)|, and for all holdout calibration data i we let V¥ = |YVi — 7i(X;)]

and V;¥ = 0—so, we observe that for weighted split conformal prediction V;U = S (X3,Y;) for all calibration

data 4, and thus S can be understood as a “nonconformity score” as in standard conformal prediction. However,
for JAW (and the jackknife+) there is a less clear correspondence between S(z,y) = y — fi(z) and {V;" } (or

{Vi¥}). We thus choose to define S as a test point score function in an effort to simultaneously maintain greater
clarity on its meaning from a user’s perspective, maintain intuitive connections to standard conformal prediction
methods, and also avoid suggesting that {V; } and {V;"} are directly defined from S in the case of JAW and
the jackknife+. It is also worth noting that there may be some score functions for which the jackknife+ and JAW
are not defined, in which case the corresponding error assessment methods would not be defined.

19



C Proofs for theoretical results

C.1 Proof of Theorem[Il

Proof. We use (a) - (d) to denote four setup steps, and we use 1-3 to denote the main steps in the
proof. Our first two initial setup steps (a) and (b) are identical to the corresponding setup steps in the
proof for Theorem 1 in Barber et al.|[2021]]:

(a) First, we suppose the hypothetical case where in addition to the training data
{(X1, Y1), ..., (Xy, Yn)}, we also have access to the test point (X, 11, Yy, +1). For each pair
of indices 7, j € {1,...,n+ 1} with ¢ # j, we define i_; ;) as the regression function fitted
on the training and test data except with the points 7 and j removed. (We follow the notation
in|Barber et al.|[2021]] where f rather than fi reminds us that the former is fit on a subset of
datal,...,n + 1 that may contain the test point n + 1.) We note that fi_; ;) = fi_(; 4 for
any i # j,and fi_(; 41y = fi—; forany i = 1,...,n.

(b) We also define the same matrix of residuals in|Barber et al.| [2021]], R € RO+Dx(n+1) with

entries
R {+0° i=J,
YO - ey (X)) i #
such that the off-diagonal entries I2;; represent the residual for the ith datapoint where both
¢ and 7 are not seen by the regression fitting.

At this point we begin to introduce some changes to the proof in Barber et al.[[2021]:

(c) We define a weighted comparison matrix that we call A* € R("+1Dx(n+1) First, define A as
the unweighted comparison matrix in Barber et al.|[2021] with entries A;; = IL{RZ-j > Rji}
(indicators for the event that, when ¢ and j are excluded from the regression fitting, ¢ has
larger residual than j), and define W as the diagonal matrix with W;; = pi’(X,,+1). Then,
define AY = W AW, so that A" has entries A;"j = p¥(Xnt1) py (Xnt1) - I{R;; > Rji}.
Forany i, j € {1,...,n+1}, note that A} > 0 implies AY; = 0 forany i,j € {1,...,n+1}.
(Moreover, note that in the absence of covariate shift, pi’ (X,,4+1) = p}”(XnH) = %ﬂ for
all 4,5 € {1,...,n + 1} and the weighted comparison matrix A* becomes equivalent up to

a normalization constant to the unweighted comparison matrix A described in Barber et al.
[2021], i.e., with exchangeable data A¥ = A/(n + 1)2.)

(d) Next, as inBarber et al.|[2021]] we are interested in identifying points that have unusually
large residuals and are thus hard to predict. |Barber et al.|[2021]] defined such points with
unusually large residuals as points ¢ where 1{R;; > R;;} for a sufficiently large fraction
of other points j. However, in the covariate shift setting, we need to account for the fact
that the informativeness of the comparison 1{R;; > R;;} depends on the likelihood of j
in the test distribution relative to the training distribution: If w(X,;) > w(X; ) for some
points j, 5" € {1,...,n+ 1}\¢, j # j', then the comparison 1{R;; > R;;} should contain
more information about how difficult 4 is to predict than the comparison 1{R;;; > R;/;}.
In particular, we are interested in identifying points ¢ where 1{R;; > R,;} for a sufficiently
large total normalized weight of other points j. With this motivation, we here define the set
of “strange” points S(A") C {1, ...,n + 1} in the following two equivalent ways that each
serve a different illustrative purpose:

n+1
S(A“’) = {z c {1, N+ 1} : U)(Xz) > 0, Z (p;U(Xn_H) . ]l{RlJ > Rji}> >1- Oé}
j=1
i A
=die{l,.,n+1} : wX;)) >0, ==Y >1_q
{ { J %) Py (Xn+1) }

The first definition represents our intuition of S(A") as a set of “strange” points, which
we have described (where 1{R;; > R;;} for a sufficiently large total normalized weight
of other points j). That is, in the first definition it is relatively straightforward to see
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how S(A") C {1,...,n + 1} is the set of points ¢ € {1,...,n 4+ 1} such that for all the
points j € {1,...,n + 1}, j # ¢ where R;; > Rj;, that the sum of the normalized weights
p}“(XnH) of all such points j is sufficiently large (at least 1 — «). On the other hand,

the second definition represents how the set of strange points can be computed from the

weighted comparison matrix A", where Z;‘:ll Al /pi? (Xn1) is the row sum of the ith

row in A" divided by the common factor of the ith row, p’(X,+1). (In the absence of
covariate shift when w(Xy) = 1 forall k € {1,...,n + 1}, these definitions are equivalent
to the set of strange points in the jackknife+ coverage proof in|Barber et al.|[2021].)

The following main steps in our proof take the following structure similar to as in|Barber et al.| [2021]],
but generalizing each step to covariate shift:

* Step 1: Establish deterministically that s(awy Py (Xpn41) < 20 That is, for any
comparison matrix A", it is impossible to have the total normalized weight of all the strange
points exceed 2.

» Step 2: Using the fact that the datapoints are weighted exchangeable, show that the probabil-
ity that the test point n + 1 is strange (i.e., n + 1 € S(A")) is thus bounded by 2c.

 Step 3: Lastly, verify that the JAW interval can only fail to cover the test label value Y, if
n + 1 is a strange point.

Step 1: Bounding the total normalized weight of the strange points. This proof step follows and
generalizes the corresponding proof step for Theorem 1 in [Barber et al.|[2021]], which relies on
Landau’s theorem for tournaments [Landaul [1953]]. For each pair of points ¢ and j where i # j, let
us say that ¢ “wins” its game against point j if A}% > 0, that is if both ¢ and j have nonzero density
in the test distribution and if there is a higher residual on point ¢ than on point j for the regression
model fi_; ;). We say that 7 loses its game with j otherwise.

However, whereas [Barber et al.|[2021]] derive a bound on the number of strange points from a bound
on the number of pairs of strange points, we instead derive a bound on the fotal normalized weight
of the strange points from a bound on the sum of the product of normalized weights for two strange
points in a pair. As we will see, this idea generalizes the idea of counting pairs of points to account
for continuous weights on the points: If all points have uniform unnormalized weight of 1, then, after
adjusting for a normalizing constant in our construction, the product of unnormalized weights of
points in a pair is 1 for all pairs and our construction reduces to bounding the number of distinct pairs
of strange points.

Observe that, by the definition of a strange point, the points that each strange point i € S(A") wins
against must have total normalized weight greater than or equal to (1 — «), and thus the points that
each strange point i € S(A™) loses to can only have total normalized weight at most o — p’ (X, 41)
(our definition does not allow i to lose to itself). That is:

. . +1
Total normalized weight K

of points that i loses to Z (péu (Xnt1)  H{Ry; < RJ’L}) < a—p(Xnt1)

j=1

This inequality will help us obtain an upper bound on the sum of the product of normalized weights
between strange points in a pair. To aid with intuition, it may be helpful to think about a correspon-
dance between a product of two weights and the area of a rectangle with side lengths equal to each
weight value. Suppose that for each strange point i € S(A™) we construct a rectangle L; with width
equal point ¢’s normalized weight, p}’ (X,,+1), and length equal to the largest total normalized weight
that the points that 4 loses to could have, & — p¥’ (X,,+1). In addition, suppose that we also construct
a second rectangle L, for each strange point i € S(A") with width equal to p¥’ (X, 41 )—note that

L/ has the same width as L;,—but with length equal to half the total normalized weight of all of the
strange points other than i, that is, 5 > jesavni Pi(Xng1)-

We now take a moment to describe the meaning of the total area of the set of rectangles {L;} in a
way that we will soon make use of: The total area of {L;} is an upper bound on the sum of products
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of normalized weights for all points in a pair where one point is a strange point and the other point is
a point that the strange point loses to. To see this, note that by construction the area of any rectangle
L; is the product of point i’s normalized weight (i.e., p{’(X,,+1)) with an upper bound on the total
normalized weight that the points ¢ loses to could have (i.e., & — p!’(X,,+1)). Thus, the area of L;
is by construction an upper bound on the product of point 7’s normalized weight (i.e., p¥’ (X 41))
with the total normalized weight of the points that ¢ actually loses to. To state with more precise
notation that we will use again later, for each point j that 7 actually loses to, let us construct a
rectangle L;; with width p}’(X,41) and length Py (Xy541). Then, for all these points j, we can
arrange the rectangles {L;;} so that they are contained within L; and so that L;; and L;j have zero
overlapping area for all j # j': that is, by this construction 3, ; ..o ; Area(Lij) < Area(L;). So,
it is equivalent to describe the area of L; as an upper bound on the sum, over all points j that ¢ loses
to, of the product of ¢’s normalized weight with j’s normalized weight; and thus by extension, the
total area of {L; } is as we described earlier.

On the other hand, the total area of the set of rectangles {L.} is the sum of the product of the
normalized weights of two strange points in a pair over all pairs of strange points, where the factor of
1

5 avoids double counting the pairs of strange points. To see this, note that for every pair of strange

points {4, j} there is a distinct subrectangle—call it L}, —that is contained in L}, such that L;; has
width p}’ (X,+1) and length %p}”(XnH) (where we also assume that for any j # j’, L;; and L;;
overlapping area of zero). Moreover, for this pair of strange points {7, j} there is also an analogous
subrectangle Lj; with width pY (X, 41) and length p}* (X, 41) contained in L. Thus, the combined
area of L, and L}, is Area(L;;) + Area(L};) = p{’(Xn+1) - p¥'(Xn+1), and the total area of the
set of rectangles { L.} is as described. (Furthermore, note that when the unnormalized weights are
all equal to 1 as in[Barber et al.|[2021]], the area of {L}}—adjusted by a normalization constant—is
equivalent to the total number of pairs of strange points s(s —1)/2, where s = |S(A"™)] is the number
of strange points.)

Now, observe that any pair of two strange points is also a pair of points where one point is
strange and the other is a point that the strange point loses to, so the set of pairs of points in-
cluded in the construction of {L}} is a subset of the set of pairs of points for which the area of
{L;} is the upper bound previously described. To be more precise, let {4, j} be a pair of strange
points, where (without loss of generality) let us say ¢ loses to j. Then, for the L;j and L;-i as
described before, there exists a distinct L;; such that Area(L;;) + Area(L’;) = Area(L;;). More
generally, we see that the total area of all the subrectangles {L;;} is bounded by the total area
of the subrectangles {L;;}, that is 3, icgiawy jzj Area(Ly;) = 32, icsaw), izj Area(Lij) <
D ieS(Aw), ilosestoj Area(Lij).  Moreover, by construction -, icg(aw, iz; Area(Ls;) =
Dies(aw) Area(Li) and 37 e s 4wy itoses o j AT€a(Lij) < D 7ic 54wy Area(L;). Therefore, the area
of the set of rectangles { L’} is less than or equal to the area of rectangles {L; }, which we can write
as follows:

Z Area(L}) < Z Area(L;)

1ES(AW) 1ES(AW)
w 1 w w w
Z (pz (Xn+1) ° 5 Z pj (Xn—‘rl)) S Z (pz (X7L+1) . (O[ _pi (X1'L+1)))
IES(AW) JES(AW)\i 1ES(AW)

(C.L.L1)

Recall that we defined p}’(X,,4+1) = w(X;)/ Z;;Lill w(Xy)Vie{1,..,n+ 1}, so in the uniform
weighted case where w(X;) =1Vi € {1,...,n+ 1} then ZZ: w(Xg) = n + 1, and multiplying
both sides of the inequality above by (n + 1)? yields the analogous inequality in Barber et al.|[2021]]
that bounds the number of pairs of points.
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We now proceed to solve for an upper bound on ), g (aw) P;’ (X1+1), the total normalized weight
of strange points:

% Z (P;U(Xnﬂ)' Z p}ﬂ(Xm-l)) < Z (pi“(Xnﬂ) : (CY—P?(XnH)))

IES(AW) JES(AW)\1 IES(AW)
1 w w
3 > P Xy Xas) < a0 > pE(Xngn) = Y pi(Xng)?
i.jES(A®), i) ieS(Aw) ies(Aw)
1 w w
ADETE D SR mEIES0) ED e
ies(aw) i.jES(Aw) ieS(Aw)
1
2<z,n+1+z(i ) o 3 B (e
ieS(Aw) ies(Aw) ]ES(A“’) ies(aw)
1 w
2( > pi (Xn+1)2+( > i (Xnt1) >§ a > p(Xen)
ieS(AW) ieS(AW) i€S(Aw)
Zies(Aw)p;U(Xn+1)2
w(X. (X P <2
Yiesam PP Xntr) N 2o
i w pw X +1 2
> PE(Xnpn) < 20— 2ESAY) Zw(Xn !
ieS(Aw) ies(aw) P (Xnt1)

where because 0 < p;’(Xp41) < 1Vi=1,...,n+1and p}’(X,11) > O0forsomei € {1,...,n+1},
Siescawy Py (Xnt1)?

we have 0 < p¥(Xp41)? < p¥(Xnq1) Vi =1,..,n+ 1 and thus 0 < s aw) PP (Knt 1) <1,
and we have
Y (X)) <20 (35)
iES(AW)
as desired.

Step 2: Weighted exchangeability of the datapoints. We now leverage the weighted exchangeability
of the data to show that, since the total weight of the strange points is at most 2q, that a test point has
at most 2« probability of being strange. We organize this step into the following pieces:

o Step 2.1: Argue that A" L P.AVP] forany (n + 1) x (n + 1) permutation matrix P;.
o Step 2.2: Argue that P{n + 1 € S(A¥)} = P{j € S(A¥)} forall j € {1,...,n+ 1}.

o Step 2.3: Use the fact that the total weight of the strange points is at most 2« (from Step 1)
to show that P{n + 1 € S(A™)} < 2a.

Beginning with Step 2.1, observe that with W denoting the diagonal matrix with W;; = p¥ (X, 41),
W A has entries (W A);; = pl(Xn41) - 1{R;; > Rj;} (equivalent to A with each ith row weighted
by pi’ (Xn+1)); that AW has entries (AW);; = p} (Xy41) - 1{Ri; > R;i} (equivalent to A with
each jth column weighted by p’(X,11)); and recall that A¥ = WAW. For a permutation
of {1,...,n + 1}, let P, denote the corresponding permutation matrix—that is, 7(i') = i <~
P.(#',i) = 1, which corresponds to the ith row in A becoming the i'th row in P, A. With 4 denoting
equality in distribution, we will argue that P,WA < WA and AWPJ < AW, which together
implies P A¥PT £ Aw,

To show P, W A L W A, we draw on and adapt ideas from the proof for Lemma 3 in [Tibshirani
et al[[2019]. For simplicity we assume that the pairs (R;;, R;;) are distinct almost surely (the
result holds in the general case as well, but the notation is more cumbersome). Using condensed
notation for the data as {Z1, ..., Zn11} = {(X1,Y1), ..., (Xn+1, Ynt1)}, denote by E, the event

that {Z1,..., Zn+1} = {21,y 2n+1}, and let f denote the density function of the joint sample
21y ..y Znt1- Note that P, W A—which results from permuting the rows of W A—does not change
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the column membership of any entry in W A. In particular, P,W A has entries (P,WA);; =

(W A)z();» so to show P, WA L WA it is sufficient to show that each jth column in P, W A is
equivalent in distribution to the corresponding jth column in W A. To do so, we begin by conditioning
on F, and then inspecting the probability of the joint event R, ; = 745, Rjn41 = 75, for each
i € {1,...,n + 1} in each jth column, which occurs when Z,, 1 = z;:

P{Rn+1,; =7ij, Rjnt1 =71ji | B2} =P{Zp1 = 2 | B}
_ Zﬂ':ﬂ‘(nJrl):i f(z‘n'(l)’ ey zﬂ'(nJrl))
Zﬂ f(z‘n'(l)a () Z7\'(7L+1)) ’

where the second line above follows by the same reasoning as in the proof for Lemma 3 in Tibshirani
et al][2019). Then, recalling that data from covariate shift (2)) are weighted exchangeable with weight

functions wy = ... = w, = land wy41 = w = gg" , this becomes
ZTK‘ im(n+1)=i w<x‘ﬂ'(n+1)) (Zﬂ'(l)a ey Z7r(n+1))
P{Rn+1 =Tij 7R,n+1_r77, |E }— —
7 e ! Zw ’IU( (n+1) ) ( (1)1"')Z7r(n+1))
ZTA’ im(n+1)=1 (x‘ﬂ'(n+1))g(zlv ceey Zn+1)
27\- ﬂ)( 7r(n+1))g(zl7 cey Zn+1)
Zﬂ' im(n+1)=1 (:C‘n'(n-&-l))
ZTr w( 7T(’n+1))
w(z;)
iy ()
=D; ($n+1)7
which can be written as
n+1

(Rn+1»jaRjA,n+1) ‘ E, ~ Zp;u(xwrl)é(r,;j,mi)'
i=1

Due to the conditioning on F, this is equivalent to

n+1
(Rns1,5s Rjni1) | Bz~ Y 0¥ (Xn41)d(R,, Ry
i=1
and since this statement holds for any {71, ..., Z, 41} = {21, ..., Zn+1 }, marginalization yields
n+1

(Rn+1,jv ]n+1 sz Xnt1 5(RLJaRJ7«)

More generally, substituting in the index i’ for n. + 1 in the argument above yields

n+1
(Rirj, Rjir) Zpl Xn+1)0(Rij R;1)- (36)

Statement (36)) tells us that within each jth column, draws of (R j, R; ;) from this discrete distri-
bution resemble the analogous draw (R,,+1,j, R n+1) for the test point. That is, the distribution of
(Rir j, Rj ) in (306) is irrespective of the index ¢’ and so these draws “look exchangeable”, and the
distribution of an arbitrary jth column of W A does not depend on the ordering of its elements. Thus,
P.WA < WA and by a similar argument AW P < AW, which together implies Py A¥ P < Aw
for any (n + 1) X (n + 1) permutation matrix Py, the desired result for Step 2.1.

Because P, A" P < Av from Step 2.1, this implies P{j € S(P,AYP])} = P{j € S(A")}.

Now, let P, denote a specific permutation matrix that maps n + 1 to 4, that is where P, (j,n+1) = 1.
Then, deterministically, n + 1 € S(A%) <= j € S(ITA*II"), so we have
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P{n+1¢€ S(A")} =P{j € S(P,A"P] )} = P{j € S(A™)}

forall j =1,...,n + 1. That is, an arbitrary training point j is equally likely to be strange as the test
point n + 1, which concludes Step 2.2.

Then, we begin Step 2.3 by multiplying by p%’(X,,41) to obtain

Py (Xn1) -P{n+1 € S(A")} = pf (Xnt1) - P{j € S(A")}

And summing over j, we have

n+1 n+1
ij ni1) P{n+1€S(AY)} = p¥(Xni)-Pfj € S(A)}
j=1
n+1 n+1
P{n+1e€S(A")} Y p¥ (Xps1) = ij ni1) - P{j € S(A")}
j=1
n+1
P{n+1€S(A")} = py(Xn1) P{j € S(A")}
j=1
B[ 5 )
JES(Av)
<2«

where the last line follows from Step 1.

Step 3: Connection to JAW: We would now like to connect our strange point result from Step 2 to
coverage of the JAW prediction interval. Following the approach of [Barber et al.|[2021]], suppose that

Vo1 € C'\f{ffyv(XnH). Then, either
Yoi1 > Qf_o{p} (Xn41)0a_,(x, 1)+ REOO }

= Y P (Xng1)  L{Vg1 > isi(Xps1) + BRI} 21— @

or otherwise

Yog1 < Qg {pi’( Xnt1)05 l(Xn+1)+RLOO}
= ZP?(XnH) : I{Ynﬂ < pi—i(Xnt1) — RiLOO} >1—-«

And we can write the union of these two events as

1—a <> pP(Xn1) - W{Voy1 & ii(Xnga) = RIOO}

n
:Zp?(xn-&-l ]1{|Y fi— ( ’ |Yn+1 - z(Xn-i-l)‘}

n+1
= ZP;"U(XnH) “U{Rint1 < Rnyri}

from which we see that n + 1 € S(A"™)—that is, n + 1 is a strange point. This result together with
the result from Step 2 gives us

P{Yn+1 4 GJAW Xn+1)} < P{n +1e S(A“’)} < 2a
" P{Yn+1 € CJAW Xn+1)} >1-2«a

n,x
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C.2 Proof of Theorem2]

Proof. First, assume that Assumptions 1 - 4 and Condition 2 from |Giordano et al.| [2019a] hold
uniformly for all n (where n is the number of training points). Then, Proposition 1 from Giordano
et al. [2019a]] establishes that

max ||0F5 — 6_|| =0, (N~ z(E+D) 37)
i€[n] 2
So, for fixed K:
lim max ‘HALF;K —0_;l| = Op(N_%(K'H)) =0 (38)
N—o00 i€[n] 2
Or, for fixed N:
lim max ‘éLF;K —0_|| =o0,(N2E+Dy g (39)
K—o0 i€[n] 2

~IF-K

—1

Thus, 8% — _; as either N — oo or K — co. This implies that
N — 0o or K — 0o because the model ji_; is fully determined by its parameters 6_;. Therefore,
éggfg“A-K (Xn+41) — éffy(XnH) in the limit of N or K, and thus by Theorem |1} P{Y, 41 €
@i’fg“A'K(XnH)} >1—2aas N — ooor K — oco.

Now, separately assume that Assumptions 1 - 4 and Condition 4 from |Giordano et al.|[2019a] hold
uniformly for all n. Then, Proposition 3 from Giordano et al.|[2019a] gives that

— Ji_; as either

max ’él_F;K - é‘iH — O(N~(E+1)) (40)
i€[n] ) 2
The rest follows from a similar argument as when we assumed Condition 2. O

C.3 Proof of Theorem
Proof. Recall that we define E as

E={yeR:7" <8Xn41,y) <77}, (41)
that we assume access to a predictive inference method with prediction sets given by

Oyt (X, 1) = {y € R: Qo {py (Xn41)0y2} < S(Xny1,9) < QF_ o ApF (Xng1)dyw }}
(42)

and moreover that we define a‘g’audit as
o™ = min ({a’ + 77 < QuipF(Xni1)oyp} s QF (PP (Xup)oy} <77 }). 43)

: w-audit . w-audit 1l—co : . .
Then, if af; exists and o < = then by construction we can combine (43)) with the

definition of the prediction set ég;g“git(xnﬂ) to obtain

Ot (K1) = {y+ 77 < Qup bF (Kns )02} < S(Xnsa,9)

< Qf o {PF (Xur)dys} <77}, @4)
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which shows that C¥-24it(X, 1) C E. Thus, P{Y,,41 € E} > P{Y,141 € C¥ ™9 X,, 1)}, and by

n,og n,ag
the coverage guarantee for C2'% (X, 1) it follows that
P{Yn+1 S E} > P{Yn—‘ﬂ € 6X;Zugit(Xn+1)} >1-— Cla‘gamﬂt — Co. 45)

Otherwise, o'}t does not exist or ajy2udit > 1;—1” = 1 — cja@dit — ¢y < 0. Neither of these

cases yield a nontrivial (positive) lower bound for P{Y,, 1 € E}, so for these cases

P{Y,41 € E} > P{Y,41 € C™ (X, ,1)} > 0. (46)

n,ap

O

C.4 Proof of Theorem

Proof. The proof proceeds similarly as the proof for Theorem 3]in Appendix [C.3] except replacing

the data-dependent weights p¥’ (X,,41) with the uniform weights n%_l

O

D Additional experimental details and analysis

D.1 Creation of covariate shift

To induce covariate shift, test points were sampled from the set of points not used for training with
exponential tilting weights such that the total number of test points was equal to half the number
of points not used for training. For the relatively lower dimensional airfoil and wine datasets, the
weights took the form w(z) = exp(x” ), while for the relatively higher dimensional datasets the
weights took the form w(z) = exp(xi-,3) where zpca is some PCA-based representation of the
covariates data z.

Figure [7] shows the distribution first and last features in the airfoil dataset before and after the
exponential tilting is applied to induce covariate shift with parameter 5 = (—1,0,0,0,1). In our
main experiments, exponential tilting parameters were selected for each dataset so that the associated
covariate shift would result in a similar loss in how informative the training set is regarding the biased
test set, as assess by reduced effective sample size.

I No covariate shift I With covariate shift

Log frequency Log suction Log frequency Log suction

300
200
250

200 150

150
100

100

50
50
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6 7 8 9 10 -8 -7 -6 -5 -4 -3 6 7 8 9 -7 -6 -5 -4 -3

0l

Figure 7: Distribution log frequency and log suction features of airfoil dataset before and after
exponential tilting.

Specifically, for a training set size of 200 points for each dataset, the exponential tilting parameters
were selected and tuned so that the estimated effective sample size of the training data was reduced
to approximately 50, averaged across 1000 random train-test splits. For training data X1, ..., X,
and likelihood ratio w, the effective sample size was estimated using the following commonly-used
heuristic 7 = >, Jw(X;)[]?/ > |[w(X;)[? [Gretton et al., 2009} Reddi et al., 2015} Tibshirani
2019].

The specific selections of /3 that resulted in approximately . = 50 for each dataset are as follows. For
the airfoil dataset, unless otherwise specified the tilting parameter was Bairton = (—0.85,0,0,0,0.85),
which induced covariate shift such that points with low values of the first feature and high values
of the last feature were more likely to appear in the test distribution (see Figure [7). The wine
dataset was similarly tilted using the first and last components, with a tilting parameter of Byine =
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(—0.53,0,...,,0,0.53). The wave dataset is composed of 48 total features, of which the first 32
features are latitude and longitude values, and where the remaining 16 features are absorbed power
values. Accordingly, the first principal component of only the 32 location features was used for tilting
along with the first principal component of only the 16 absorbed power values, with a tilting parameter
of Byave = (—0.0000925, 0.0000925) unless otherwise specified. For the superconductivity dataset,
only the first principal component of all of the data was used for tilting, with tilting parameter
Bsuperconduct = 0.00062. Lastly, for the communities and crime dataset, the first two principal
components of the whole dataset were used with tilting parameter Scommunities = (—0.825,0.825).

D.2 Models

For all experiments with JAW and its baselines we used two different regression predictors fi: random
forests (scikit-learn RandomForestRegressor), and neural networks (scikit-learn MLPRegressor with
LBFGS optimizer, logistic activation, and default parameters otherwise).

For all experiments comparing the coverage and interval width of JAWA to other influence function
approximated baselines, we used a neural network predictor with one hidden layer consisting of
25 hidden units. Covariate and label data were centered and scaled. The neural network was
trained for 2000 epochs with batch sizes of 50 and a learning rate of 0.0001, which generally
resulted in convergence. The objective function for the neural network in JAWA is the negative log
likelihood with a Gaussian prior or L2 regularization term. The L2 regularization was added to satisfy
assumptions for computing IFs described in|Giordano et al.|[2019a] and due to empirical findings
of first-order IFs for neural networks requiring regularization for reliable results [Basu et al., [2020].
The L2 regularization A parameter was tuned using a grid search prior to all experiments using a
“tuning” validation set of 200 samples that were excluded from both the training and test sets in the
experiments (see Appendix [D.8|for more details regarding the L2 regularization tuning).

D.3 Comparison of coverage variance for JAW and weighted split

Table 3: Coverage variance for JAW and weighted split conformal prediction, averaged across 1000
experimental replicates (i.e., statistics are the variance of all of the 1000 mean coverage statistics,
one for each experiment). Lower coverage variances indicate more reliable coverage. The coverage
variance for JAW is lower than that of weighted split conformal prediction in all datasets and predictor
conditions due to JAW avoiding the sample splitting required by weighted split.

Dataset Airfoil Wine Wave Superconduct Communities
Method NN RF NN RF NN RF NN RF NN RF
Weighted split | 0.0022 | 0.0023 | 0.0019 | 0.0017 | 0.0030 | 0.0029 | 0.0040 | 0.0035 | 0.00194 | 0.0021

JAW 0.0010 | 0.0019 | 0.0013 | 0.0015 | 0.0005 | 0.0014 | 0.0021 | 0.0030 | 0.00189 | 0.0014

D.4 Additional AUC results

Due to space constraints, in the main paper Figure 5| we only report error assessment AUC results for
the neural network predictor condition. For completeness, in Figure |8| we present error assessment
results for both the neural network predictor (top row) and random forest predictor (bottom row),
which are similar. Moreover, [8|also presents results for several baselines with reduced sample size
to investigate how JAW’s reduced effective sample size inherent to likelihood-ratio weighting may
impact its performance. In particular, with dotted lines Figure [§]also presents the AUROC scores
for jackknife+, CV+, and split conformal with the sample size for their predictive intervals reduced
to 50 (note that only the sample size used to compute the predictive intervals was reduced to 50,
not the sample size used to train [z), because n = 50 is approximately the effective sample size of
JAW in these experiments (see Appendix [D.T). Relative to the methods with full sample size in
the calculation of their predictive intervals, jackknife+, CV+, and split conformal prediction with
reduced effective sample size have reduced AUROC scores. This suggests that JAW’s AUROC is
also likely negatively impacted by its reduced effective sample size, which could explain why JAW
attains AUROC values comparable to jackknife+ despite holding the advantage over jackknife+ of
coverage validity under covariate shift.
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Figure 8: AUROC values for different tolerance levels 7 across the three datasets, averaged across 50
experiment replicates, with neural network (top row) and random forest (bottom row) jx predictor.
CV+-effSS, jackknife+-effSS, and split-effSS refer to the corresponding methods with sample size
reduced to 50 for the construction of their predictive intervals, as described in Appendix [D.4]

D.5 JAW with estimated weights

JAW assumes access to oracle likelihood ratio weights, but that in practice this information is often
not available. In such cases, the likelihood ratios can be estimated through an approach such as
probabilistic classification, moment matching, or minimization of ¢-divergences (for a review of
likelihood ratio estimation approaches see[Sugiyama et al. [2012])). JAW’s coverage performance will
depend on the quality of the likelihood ratio estimates.

The following experiments compare coverage histograms of JAW with oracle likelihood-ratio weights
those of JAW with weights estimated from probabilistic classification. We follow the approach used
in[Tibshirani et al.| [2019] for estimating the likelihood-ratio weights using logistic regression and
random forest classifiers. Specifically, for training covariate data X3, ..., X,, and test covariate data
X1y ey Xnem Where C; = 0fori =1,...,nand C; = 1 fori = n+1,...,n + m, the conditional
odds ratio P(C' = 1|X = z)/P(C = 0|X = z) can be used as an equivalent substitute to the
likelihood ratio weight function w(z) due to the normalization of the weights for use in JAW. Thus,
for an estimate p(x) =~ P(C = 1|X = z) obtained from a classifier such as logistic regression or
random forest, then we can use the following estimated weight function in place of likelihood-ratio
weights:

D) = 2D @7)
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Figure 9: Comparison of JAW coverage under covariate shift with oracle versus estimated likelihood
ratio weights for neural network predictor across all datasets. Blue is oracle weights, green is weights
estimated with logistic regression, and orange is weights estimated with random forest classifier.
Histograms represent 1000 experimental replicates.
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Figure [9] illustrates the coverage performance of JAW with weights estimated by both logistic
regression and random forest classifiers as described in Section[D.2] compared to JAW with oracle
weights. Results are for both neural network and random forest regression predictors across all five
UCI datasets. We observe that the coverage histograms for JAW with both weight estimation methods
are largely directly overlapping with the coverage histogram for JAW with oracle weights. These
results demonstrate the applicability of JAW with estimated weights for predictive inference under
covariate shift when the true likelihood ratio is not known but can be estimated from the data.

D.6 Ablation studies on shift magnitudes

We demonstrate the effect of different magnitudes of covariate shift by comparing the coverage
performance of JAW and the jackknife+ on the airfoil dataset with different magnitudes of the
exponential tilting bias parameter 3. Informed by these experiments depicted in Figure [I0}—where
JAW’s mean coverage remains consistent but the variance in coverage increases with increased
covariate shift magnitude—we performed additional experiments to investigate the potential cause
of JAW’s increased variance. Specifically, we compare histograms of JAW’s coverage at a fixed
covariate shift magnitude to that of jackknife+ without covariate shift but with reduced “effective
sample size”, which is known to be reduced by likelihood ratio weighting. [Tibshirani et al.[[2019]
made a similar comparison between weighted split conformal prediction under covariate shift and
standard split conformal prediction with reduced effective sample size, and we use the same heuristic
for effective sample size estimation [Gretton et al.l 2009, |[Reddi et al., 2015]] (which we also used for
selecting exponential tilting parameter values for each dataset in Figure 3):

Effect of different magnitudes of covariate shift As shown in Figure |10, the extent of covariate
shift can be controlled by modifying a parameter in the exponential tilting weights so that weights
are are more or less drastic. When the bias parameter is set to O this corresponds to no bias or IID
train and test data. We can see that JAW is robust to different amounts of covariate shift, generating
high coverage even under high level of shift.
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Figure 10: JAW performance compared to jackknife+ on the airfoil dataset with random forest [
function, under increasing magnitude of covariate shift (different 3 values), with 200 replicates.

Reduced effective sample size accounts for JAW increase in coverage variance under shift While
JAW’s mean coverage remains relatively consistent under different magnitudes of covariate shift
as seen in Figure we also observe that the variance in coverage is higher for higher levels of
shift. We hypothesized that this increase in variance is due to the high variance issue associated with
important weighting methods that is well known [Redd1 et al., [2015] [Li1 et al., 2020] in the literature.
We evaluate this hypothesis with effective sample size experiments reported in Figure[TT]that compare
a histogram of JAW’s coverage under covariate shift with the coverage of jackknife+ with IID data but
reduced effective sample size corresponding to the magnitude of covariate shift that JAW is evaluated
on (see Appendices [D.T|and [D.6| for details). In Figure [T we see that the coverage histogram for
JAW under covariate shift is nearly directly overlapping with the histogram for jackknife+ coverage
with no shift but reduced effective sample size. This result suggests that the reduction of effective
sample size due to likelihood ratio weighting is largely if not entirely responsible for the increase in
JAW coverage variance for increased shift magnitudes. We leave the variance reduction of our work
to the future work.
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Figure 11: Comparison of JAW coverage histogram under covariate shift (blue) to jackknife+ coverage
histogram (green) with no covariate shift but reduced effective sample size corresponding to the
magnitude of covariate shift that JAW is evaluated on. Experiments are for both neural network
(Ieft) and random forest (right) predictors on the airfoil dataset, with 1000 experimental replicates.
The largely overlapping histograms suggests that the increase in JAW coverage variance observed in
Figure[I0)is largely due to the decrease in effective sample size inherent to likelihood ratio weighting.

D.7 Empirical runtime of JAWA compared to JAW

Whereas JAW requires retraining n leave-one-out models, JAWA does not require any retraining,
and thus generally enjoys significantly faster runtime than JAW. In Table 4 we report the empirical
runtime of JAW compared to JAWA for different orders of JAWA'’s influence function approximation.
In these experiments, JAWA is orders of magnitude faster than JAWA regardless of whether the
influence function approximation is first, second, or third order (though of course the specific runtime
statistics depend on the model architecture, optimization scheme, or dataset). JAWA’s runtime does
not increase substantially (relative to JAW’s runtime) with increased influence function orders for
K e{1,2,3}.

Table 4: Example empirical comparison between the runtime for JAW and JAWA- K for different
influence function approximation orders K € {1, 2, 3} for the neural network predictor used in the
JAWA experiments (see Appendix [D.2)), rounded up to the nearest second. This runtime experiment
was performed on an 8-core personal computer with 32 GB of memory.

Method Airfoil Wine Wave Superconduct Communities
JAW 58 min,39s | 59 min, 18s | 1 hr,24 min, 24 s | 1 hr,26 min, 53 s | 1 hr, 25 min, 42 s
JAWA-1 ls 2s 4s 7s 8s
JAWA-2 3s 4s 6s 11s 14 s
JAWA-3 11s 12s 16 s 21s 23s

D.8 L2 regularization for JAWA experiments

For the experiments involving JAWA and its baselines, the following L2 regularization tuning
procedure was used for the neural network described in the second paragraph of [D.2] The grid
search evaluated the coverage of the first-order influence function approximation of the jackknife+ at
different values of the regularization tuning parameter A € {0.5,1,2,4, 8,16, 32,64, 96, 128} for 10
train-test splits among all data for a dataset aside from the holdout tuning set. The smallest value
of A in the grid search for which the coverage of the first-order influence function approximation of
the jackknife+ exceeded 0.875 was used. The coverage calibration threshold of 0.875 was selected
because the change in coverage due to increased A appeared to plateau just above or below the
target coverage rate of 0.9 for each dataset, so setting the threshold slightly below 0.9 can help
avoid over-regularizing. See /Angelopoulos et al.| [[2020] for a discussion of calibrating uncertainty
estimation in conformal prediction. This grid search procedure identified a separate A regularization
parameter for each dataset: A\gir = 1, Awin = 8, Away = 4, Asyp = 96, Acom = 64. Additionally, we
also added a dampening term to the Hessian (for [Fs computation) as in|Koh and Liang|[2017] so that
the smallest eigenvalue of the Hessian was at least 0.5.
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Figure 12: Grid search plots for tuning the A L2 regularization parameter for influence function
coverage experiments. All experiments are done with 1st, 2nd, and 3rd order influence function
approximations of the jackkinfe+ (denoted in blue, orange, and green lines in the figure). The y-axis
for each plot is the average coverage on the tuning dataset for each L2 regularization parameter
A€ {0.5,1,2,4,8,16,32,64,96, 128}

D.9 Histogram comparison of jackknife+ and JAW coverage under covariate shift

Figure[T3|displays an example histogram comparison of jackknife+ and JAW coverage under covariate
shift for both the neural network and random forest predictors on the airfoil dataset.

Neural network g predictor Random forest i predictor

[0 Jackknife+
AW
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Figure 13: Jackknife+ versus JAW coverage under covariate shift for the airfoil dataset, when
B8 =(-1,0,0,0,1), for 1000 replicates. JAW maintains the high coverage under covariate shift.

D.10 Cases where jackknife+ may not lose coverage

Although JAW maintains significantly higher coverage than jackknife+ in most conditions, our
results suggest that there are some cases when jackknife+ may not lose coverage despite lacking a
coverage guarantee for covariate shift. For instance, in Figure [3|jackknife+ does lose coverage for
the random forest i predictor, but it does not appear to lose coverage below the target level with the
neural network [i predictor. Figure|14]allows for a closer look at this observation, with the coverage
histograms for JAW and jackknife+ on the superconductivity dataset for both random forest and
neural network fi predictors. In Figure [14]there does appear to be a slight loss of coverage for the
jackknife+ with neural network g predictor, but not as significant of a loss of coverage as with a
random forest fi.

A stronger example were jackknife+ appears to not lose coverage under covariate shift is the wave
dataset, where JAW and jackknife+ appear to have similar coverage (Figure [3). Figure[I5]examines
this observation more closely by comparing JAW and jackknife+ coverage histograms corresponding
to increasing levels of covariate shift. For the wave dataset, jackknife+ does not seem to lose coverage
regardless of the extent of covariate shift.

Though we leave detailed analysis of the conditions that cause jackknife+ to lose coverage or not for
future work, we conjecture that jackknife+ loss of coverage may be related covariate shift that makes
difficult-to-predict datapoints more likely in the test distribution, and conversely that jackknife+ may
not lose coverage when covariate shift does not make difficult-to-predict datapoints more likely in
the test distribution. That is, the covariate shift method we use—exponential tilting—causes rare
training points to be more common in the test distribution based on the 3 used for tilting, but our
conjecture is that the rarity of a datapoint in the training distribution does not necessarily determine
how difficult that point is to predict. If rare but easy-to-predict datapoints are made more common
due to exponential tilting, then this could explain why jackknife+ does not lose coverage in some
cases as in Figure[T3] though this conjecture requires further investigation.
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Figure 14: Comparison of the histogram of coverage on Superconductor dataset under covariate shift
on the first principal component of the data, with tilting parameter 5 = 0.6. JAW still achieves high
coverage while jackknife+ loses coverage significantly for the random forest ji predictor (right). For
the neural network /i predictor (left), jackknife+ does not substantially lose coverage, while JAW has
marginally higher coverage, illustrating minimal benefit of JAW over jackknife+ in this case. This is
300 replicates of the experiments.
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Figure 15: JAW and jackknife+ coverage for different levels of covariate shift levels on the wave
energy converters dataset. Each column corresponds to a different level of shift, with increasing shift
towards the right. The top row compares JAW (green) and jackknife+ (blue) coverage for a given shift
level. The bottom row depicts the first principal component of the data at a given shift level. Neither
jackknife+ nor JAW lose coverage at any tested shift level. This is 100 replicates of the experiments.

E Code and computational details

E.1 Code:

https://github.com/drewprinster/jaws.git
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E.2 Computational details

Most experiments, aside from the runtime comparison described in Appendix Table [] were
performed on an institutional high performance computing cluster (HPC) using 10 CPUs with a total
of 50GB of memory. Some experiments with the superconduct and communities datasets were run
on the HPC with 20 CPUs and a total of 100GB of memory.
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